A Hybrid Inertial Projection-proximal Method for Variational Inequalities
نویسنده
چکیده
The hybrid proximal point algorithm introduced by Solodov and Svaiter allowing significant relaxation of the tolerance requirements imposed on the solution of proximal subproblems will be combined with the inertial method introduced by Alvarez and Attouch which incorporates second order information to achieve faster convergence. The weak convergence of the resulting method will be investigated for finding zeroes of a maximal monotone operator in a Hilbert space.
منابع مشابه
An inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملHybrid Proximal-Point Methods for Systems of Generalized Equilibrium Problems and Maximal Monotone Operators in Banach Spaces
In this paper, by using Bregman’s technique, we introduce and study the hybrid proximal-point methods for finding a common element of the set of solutions to a system of generalized equilibrium Problems and zeros of a finite family of maximal monotone operators in reflexive Banach spaces. Strong convergence results of the proposed hybrid proximal-point algorithms are also established under some...
متن کاملVariational inequalities on Hilbert $C^*$-modules
We introduce variational inequality problems on Hilbert $C^*$-modules and we prove several existence results for variational inequalities defined on closed convex sets. Then relation between variational inequalities, $C^*$-valued metric projection and fixed point theory on Hilbert $C^*$-modules is studied.
متن کاملConvergence rate analysis of iteractive algorithms for solving variational inequality problems
We present a unified convergence rate analysis of iterative methods for solving the variational inequality problem. Our results are based on certain error bounds; they subsume and extend the linear and sublinear rates of convergence established in several previous studies. We also derive a new error bound for γ -strictly monotone variational inequalities. The class of algorithms covered by our ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004